voidswap(int *a,int *b)//交换函数 { int temp = *a; *a = *b; *b = temp; } voidselection_sort(int arr[], int len) { int i,j;
for (i = 0 ; i < len - 1 ; i++) { int min = i; // min记录最小值下标 for (j = i + 1; j < len; j++) //遍历排序的元素 if (arr[j] < arr[min]) //找到目前最小值 min = j; //记录最小值 swap(&arr[min], &arr[i]); //最后和最小值交换 } }
每趟排序,根据对应的增量 ti,将待排序列分割成若干长度为 m 的子序列,分别对各子表进行直接插入排序。仅增量因子为 1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。
代码实现
1 2 3 4 5 6 7 8 9 10 11
voidshell_sort(int arr[], int len) { int gap, i, j; int temp; for (gap = len >> 1; gap > 0; gap >>= 1) for (i = gap; i < len; i++) { temp = arr[i]; for (j = i - gap; j >= 0 && arr[j] > temp; j -= gap) arr[j + gap] = arr[j]; arr[j + gap] = temp; } }
使用分治思想排序
*归并排序
归并排序(Merge sort)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
intmin(int x, int y) { return x < y ? x : y; } voidmerge_sort(int arr[], int len) { int *a = arr; int *b = (int *) malloc(len * sizeof(int)); int seg, start; for (seg = 1; seg < len; seg += seg) { for (start = 0; start < len; start += seg * 2) { int low = start, mid = min(start + seg, len), high = min(start + seg * 2, len); int k = low; int start1 = low, end1 = mid; int start2 = mid, end2 = high; while (start1 < end1 && start2 < end2) b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++]; while (start1 < end1) b[k++] = a[start1++]; while (start2 < end2) b[k++] = a[start2++]; } int *temp = a; a = b; b = temp; } if (a != arr) { int i; for (i = 0; i < len; i++) b[i] = a[i]; b = a; } free(b); }
voidswap(int *x, int *y) { int t = *x; *x = *y; *y = t; }
voidquick_sort_recursive(int arr[], int start, int end) { if (start >= end) return; int mid = arr[end]; int left = start, right = end - 1; while (left < right) { while (arr[left] < mid && left < right) left++; while (arr[right] >= mid && left < right) right--; swap(&arr[left], &arr[right]); } if (arr[left] >= arr[end]) swap(&arr[left], &arr[end]); else left++; if (left) quick_sort_recursive(arr, start, left - 1); quick_sort_recursive(arr, left + 1, end); }
voidquick_sort(int arr[], int len) { quick_sort_recursive(arr, 0, len - 1); }